基于机器学习算法的新型电力系统中电网投资成效评价及投资推演

   2025-08-27 11
核心提示:分布式电源、储能、微电网等新要素的接入给电力系统运行特性带来较大影响,电网作为新型电力系统的重要组成部分,其规划和投资决

分布式电源、储能、微电网等新要素的接入给电力系统运行特性带来较大影响,电网作为新型电力系统的重要组成部分,其规划和投资决策需要充分考虑新要素对电网投资成效的影响,确保电网投资规模、结构与新型电力系统构建的目标相一致。当前电网投资成效评价大多关注成本投入和经济效益,新型电力系统构建要求电网投资成效以整体效益为指引,提取关键影响因素,为电网投资推演提供方向性指引。首先,建立了一种基于机器学习算法的新型电力系统电网投资成效评价和投资推演方法,基于最小二乘支持向量机(least square support vector regression,LSSVM)的机器学习算法构建了电网投资成效评价模型,采用粒子群优化算法(particle swarm optimization,PSO)进行参数寻优,并以分布式电源和储能建设场景为例进行算例分析。然后,基于新型电力系统下电网物理指标、电网投资指标与电网投资成效指标之间的量化映射关系,建立电网投资推演方法和模型,采用差异化场景对电网投资推演方法进行案例分析,验证方法的可行性,为新型电力系统构建背景下电网投资决策提供理论和技术支撑。

 
反对 0举报 0 收藏 0 打赏 0
 
更多>同类技术规范
推荐图文
推荐技术规范
点击排行
包头电力设备平台所有. 蒙ICP备2025029370号
声明:本站部分信息由企业自行提供,该企业负责信息内容的真实性、准确性和合法性。